Содержание

Предисловие	11
Введение	12
Глава 1. Пробои на катоде магнетрона	16
1.1. Что такое пробой	16
1.2. Механизм возникновения пробоев на катоде	17
1.3. Причины пробоев на катоде при реактивном магнетронном	
распылении	19
1.4. Классификация пробоев по причинам их возникновения	29
1.4.1. Естественный окисел и его устранение	
с поверхности мишени	29
1.4.2. Конструктивные способы устранения диэлектрика,	
возникающего в реактивном процессе	34
1.4.3. Устранение диэлектрика, образовавшегося из-за возврата	
распыленных атомов на мишень	36
Литература	38
Глава 2. Процесс реактивного магнетронного распыления	
со среднечастотным источником питания магнетрона	42
2.1. Устранение причин пробоев на катоде магнетрона	
с помощью импульсного СЧ ИП	42
2.2. Процессы в плазме среднечастотного разряда	45
2.2.1. Форма импульсов тока во время перезарядки	
поверхности	
слоя диэлектрика	45
2.2.2. Стадии развития разряда во время рабочих импульсов	50
2.3. Влияние параметров СЧ импульсов на скорость	
и механизм осаждения пленки	55
2.4. Работа ИП при возникновении дуги	69
2.4.1. Способы обнаружения пробоя	69

2.4.2. Влияние времени задержки реакции ИП после обнаружен	ИЯ
пробоя на стабильность реактивного процесса напыления	71
2.4.3. Влияние времени выключения импульсного СЧ ИП после	;
пробоя на стабильность реактивного процесса напыления	72
2.5. Решение проблемы «исчезающего анода» при реактивном	
магнетронном разряде	73
2.5.1. Проблема «исчезающего анода»	73
2.5.2. Дуальное магнетронное распыление	76
2.5.3. Мультианодное распыление	87
Литература	88
Глава 3. Процессы в плазме у поверхности растущей пленки	96
3.1. Потоки частиц на подложку из плазмы разряда	
3.2. Электрическое смещение на подложке	
3.2.1. Электрически изолированная подложка	
3.2.2. Отрицательное постоянное смещение	
3.2.3. Среднечастотное импульсное отрицательное смещение	
3.2.4. Среднечастотное импульсное положительное смещение	
3.3. Влияние дополнительного ВЧ поля в импульсном	
магнетронном распылении	148
3.4. Температура поверхности растущей пленки	
Литература	
Глава 4. Особенности реактивного магнетронного распыления	
4.1. Причины нестабильности реактивного распыления	173
4.2. Стабилизация процесса реактивного	
магнетронного распыления	179
4.2.1. Способы устранения гистерезиса из характеристик	
реактивного процесса модификацией конструкции	
напылительной установки	179
4.2.2. Стабилизация и управление реактивным процессом	
по парциальному давлению реактивного газа	193
4.3. Измерение парциального давления реактивного газа внешни	ми
по отношению к разряду устройствами контроля	195

4.4.	Стабилизация процесса реактивного магнетронного	
	распыления по электрическим параметрам разряда	203
4.4	.1. Причины изменения электрических параметров	
	разряда при напуске реактивного газа	203
4.4	.2. Особенности вольт-амперных характеристик реактивного)
	магнетронного разряда при фиксированном потоке	
	реактивного газа	215
4.4	.3. Стабилизация реактивного процесса стабилизацией	
	напряжения разряда и контроль напуска газа	
	по току разряда	225
4.4	.4. Стабилизация процесса по току разряда и управление	
	напуском реактивного газа по напряжению разряда	228
4.5.	Достижение долговременной стабильности процесса	
	реактивного магнетронного распыления	234
4.6.	Влияние температуры мишени на процесс	
	реактивного распыления	243
Рези	оме	253
	ература	253
F 5	П	
	. Получение пленок тройных и более сложных	261
	Ских соединений	201
	Одновременное реактивное магнетронное распыление различных мишеней	261
		201
3.1	.1. Особенности процесса реактивного магнетронного	261
<i>5</i> 1	сораспыления различных мишеней в среде с кислородом.	201
5.1	.2. Покрытия с повышенной твердостью на основе	266
<i>E</i> 1	нитридов переходных металлов	200
5.1	.3. Твердые покрытия на основе тройных соединений:	202
<i>5</i> 2	окислов и карбидов	
	Магнетронное распыление в среде двух реактивных газов	
	.1. Оксинитриды	307
5.2	.2. Получение пленок оксинитридов двух материалов	225
	при магнетронном сораспылении	327
5.2	.3. Другие тройные соединения: карбонитриды	
	и карбооксинитриды	331

Литература	334
Глава 6. Структура тонких пленок и способы управления ею	341
6.1. Развитие микроструктуры и появление предпочтительной	
ориентации в растущей пленке	341
6.2. Модель структурных зон	342
6.3. Двухосно ориентированные тонкие пленки и механизмы	
формирования их структуры на наклоненной подложке	348
6.4. Экспериментальное подтверждение модели структурных зон	354
6.4.1. Пленки TiN	355
6.4.2. Пленки окиси циркония,	
стабилизированной иттрием (YSZ)	357
6.4.3. Пленки MgO	
6.4.4. Пленки хрома	362
6.4.5. Пленки AIN	362
6.5. Влияние параметров нанесения на структуру тонких пленок	
и степень их биаксиальной ориентации	363
6.5.1. Условия возникновения ориентации в плоскости	363
6.5.2. Расстояние мишень — подложка	364
6.5.3. Величина общего давления в разряде	366
6.5.4. Величина угла между мишенью и подложкой — α .	
Движущиеся подложки	367
6.5.5. Ионная бомбардировка	373
6.5.6. Толщина пленки	374
6.5.7. Остаточные газы	375
6.5.8. Легирующие присадки	378
6.5.9. Конфигурация магнитной системы магнетронов	380
6.5.10. Положительное смещение подложки	382
Резюме	383
Литература	384
Глава 7. Способы равномерного нанесения пленки	
из протяженного магнетронного источника	387
7.1. Факторы, влияющие на неоднородность толщины покрытия	
при нереактивном процессе	388

	3
7)))
2	الله

7.1.1. Влияние неоднородности магнитного поля	388
7.1.2. Влияние соотношения размеров магнетрона и подложки	389
7.1.3. Неоднородности глубины зоны эрозии, возникающие	
из-за наличия ее закругления на концах мишени	
протяженного магнетрона	391
7.1.4. Влияние положения анодов на равномерность	
толщины пленки	398
7.2. Дополнительные причины неравномерности распыления	
при реактивном распылении	403
7.2.1. Влияние состояния поверхности анода	403
7.2.2. Влияние соотношения длин протяженного магнетрона	
и системы подачи реактивного газа	403
7.3. Выравнивание неоднородностей нанесенной пленки локалы	ной
регулируемой подачей реактивного газа или аргона	404
Литература	407
Глава 8. Основы моделирования реактивного разряда	409
8.1. Моделирование изменения параметров процесса	
реактивного нанесения во времени	409
8.2. Моделирование установившегося процесса	
реактивного нанесения	413
8.3. Представление вольт-амперных характеристик разряда	417
8.4. Моделирование процессов в разряде	
в течение периода импульса	422
8.5. Моделирование процессов при среднечастотном	
импульсном распылении	428
8.6. Моделирование неустановившихся процессов	
реактивного распыления	429
8.6.1. Ход процесса при включении разряда	430
8.6.2. Ход процесса во время паузы в разряде	432
8.6.3. О быстродействии устройств управления	436
8.7. Экспериментальные исследования процессов релаксации	
в реактивном разряде после каких-либо резких изменений	
условий разряда	439

 самопроизвольные переходы реактивного разряда 	
из одного состояния в другое	439
8.7.2. Переходы реактивного разряда из одного состояния	
в другое под действием систем управления	443
8.8. Особенности моделирования процесса реактивного	
нанесения нитридов кремния и алюминия	443
8.9. Примеры применения моделей реактивного распыления	445
8.9.1. Пример применения уточненной расчетной модели	
для процесса реактивного распыления алюминия	
в смеси аргона и азота	445
8.9.2. Пример применения уточненной расчетной модели дл	Я
процесса реактивного распыления кремния. Сравнени	іе двух
процессов реактивного распыления кремния в смеси а	ргона
и одного из реактивных газов: кислорода или азота	448
Литература	454
Глава 9. Вакуумные напылительные установки фирмы	
ООО «ЭСТО-Вакуум»	457
9.1. Напылительные установки фирмы ООО «ЭСТО-Вакуум»,	
выпускавшиеся до 2004 года	457
9.2. Современные напылительные установки	4.50
серии Caroline D12	458
9.2.1. Вакуумная система установок серии Caroline D12	460
9.2.2. Унифицированные импульсные ИП, используемые	
в установках серии Caroline D12	
9.2.3. Установка вакуумного напыления Caroline D12 A	
9.2.4. Установка вакуумного напыления Caroline D12 В	
9.2.5. Установка вакуумного напыления Caroline D12 B2	
9.2.6. Установка вакуумного напыления Caroline D12 C	
9.2.7. Установка вакуумного напыления Caroline D12 B1	
9.3. Технологические особенности применения магнетронных	
установок серии Caroline D12	475
9.3.1. Нанесение резистивного слоя	
на магнетронной установке	475
9 3 2 Нанесение метаплизации на магнетронной установке	477

9.3.3. Получение чередующихся слоев различных диэлектриков	
на основе кремния в одном процессе на магнетронной	
установке	478
9.4. Резюме по напылительным установкам серии Caroline D12	479
Литература	480
Глава 10. ТСР источники плазмы	482
Глава 11. Вакуумные установки для ионного и плазмохимического	
травления фирмы ООО «ЭСТО-Вакуум»	489
11.1. Установка для реактивного ионноплазменного травления	
«Каролина РЕ 4» («Эра-3М», «Эра-4»)	489
11.2. Шлюзовая установка реактивного ионноплазменного	
травления Caroline PE 11 («ЭРА 5»)	.494
11.3. Унифицированные установки плазмохимического	
и ионно-лучевого травления серии Caroline 12	498
11.4. Установка ионно-лучевого травления Caroline IE 12	499
11.5. Установка плазмохимического травления Caroline PE 12	501
11.6. Шлюзовая установка плазмохимического травления	
Caroline PE 15	502
г. 12 г.	
Глава 12. Применения установок плазмохимического травления	502
с устройствами ТСР разряда	503
12.1. Травление монокристаллического пьезокварца	
через нанесенную металлическую маску	502
на глубину более 100 мкм	503
12.2. Скоростное анизотропное травление	505
монокристаллического кремния	505
12.3. Среднечастотная модуляция ВЧ мощности	50 (
при плазмохимическом травлении	506
12.4. Другие примеры применения установок с ТСР источниками	507
для ионно- и плазмохимического травления	.507
Глава 13. Установка Caroline PECVD 15 для плазмостимулированного	
химического осаждения из паров (PECVD) с применением	
ТСР источника	510

Литература к главам 10—13	512
Глава 14. Рекомендации по комплектации вакуумных участков для	
производства различных изделий электронной техники вакуумно-	
технологическим оборудованием фирмы «ЭСТО-Вакуум»	515
14.1. Участок производства ГИС	515
14.2. Участок производства СВЧ ГИС	518
14.3. Производство ГИС с многоуровневой разводкой	519
14.4. Участок производства полупроводниковых приборов и ИС	520
Резюме	522
Приложение	
Общепринятые в иностранной литературе сокращения	523