

МиМиР

В.П. Дядченко

Основные понятия стереохимии

Учебное пособие для студентов и аспирантов химических факультетов университетов

ТЕХНОСФЕРА Москва 2016 УДК 547 ББК 24.2 Д99

Д99 Дядченко В.П.

Основные понятия стереохимии Москва: ТЕХНОСФЕРА, 2016. – 116 с. ISBN 978-5-94836-470-4

Учебное пособие знакомит читателя с «языком» стереохимии, то есть с основными понятиями и терминами, которыми оперирует стереохимия. В книге также рассматриваются причины стереоселективности химических реакций.

Пособие будет полезным для студентов как на первоначальном этапе изучения органической химии, так и в ходе дальнейшей специализации в этой области.

УДК 547 ББК 24.2

^{© 2016,} Дядченко В.П.

^{© 2016,} АО «РИЦ «ТЕХНОСФЕРА», оригинал-макет, оформление

Содержание

Введе	ение	4
Глоро	I Простроистронное отроение мо докум и	
	І. Пространственное строение молекул и	5
	оизомерия	
	Элементы симметрии	5
2.	Изображение пространственного	
	строения молекул. Конформации	
	Хиральность и пространственные изомеры	
4.	Абсолютная конфигурация. R,S-номенклатура	33
5.	R,S-номенклатура соединений с осевой	
	хиральностью	40
6.	Оптическая активность. Рацематы	
7.	Проекционые формулы Фишера	47
	Относительная конфигурация.	
	<i>Z,Е</i> -номенклатура	54
9.	Конфигурационные ряды	
Глава	II. Стереоселективность реакций	73
	Прохиральность.	
	Концепция топных отношений	75
2.	Энантиоселективность	
	Диастереоселективность	
	Методы разделения энантиомеров	
Прил	ожение	
	оменклатура: случаи сложных заместителей	104
Спис	ок литературы	114

Введение

Органическая химия немыслима без представлений о пространственном строении молекул и его влиянии на ход химических реакций, что составляет предмет стереохимии.

Следуя Вант-Гоффу и Ле-Белю, можно сказать, что *стереохимия* — это химия в пространстве.

Основные стереохимические представления даются в базовом курсе органической химии. Однако многие понятия при этом остаются на интуитивном уровне. Цель настоящего пособия — познакомить читателя с основными понятиями, которыми оперирует стереохимия, и дать им по возможности четкое определение. В стереохимии используются определенные способы изображения молекул, а также стереохимическая номенклатура, с чем также знакомит читателя данное пособие.

Современный органический синтез — это, как правило, синтез пространственно направленный, одной из его задач является создание определенной стереохимической конфигурации. Поэтому в данном пособии рассматриваются причины стереоселективности реакций и приводятся конкретные примеры предсказания стереохимического результата энантиоселективной и диастереоселективной реакций.

Данное учебное пособие основано на курсе лекций, который автор читает на химическом факультете МГУ имени М. В. Ломоносова. В пособии рассматриваются далеко не все направления современного стереоселективного синтеза. Такие вопросы, как принципы дерацемизации, стереоселективный катализ и некоторые другие предполагается изложить в последующем, дополненном издании книги.

Автор выражает благодарность д.х.н. С. С. Трачу, д.х.н. Ю. Л. Словохотову и к.х.н. А. В. Чуракову за обсуждение некоторых вопросов стереохимии.

Глава I. Пространственное строение молекул и стереоизомерия

І. Элементы симметрии

Для описания пространственного строения молекул важно знание элементов симметрии. Термин «симметрия» интуитивно понятен. Обычно это слово ассоциируется с ограненным камнем, архитектурным сооружением и т.п. У симметричного объекта можно обнаружить один или несколько элементов симметрии, для которых можно дать строгое математическое определение. Ниже приведены простейшие сведения об элементах симметрии.

<u>Центр симметрии (центр инверсии, і)</u>

Центром симметрии объекта называется точка i, которая удовлетворяет перечисленным ниже условиям.

Для любой точки A, принадлежащей данному объекту, всегда найдется точка A', также принадлежащая данному объекту, такая что:

- 1) точки A, i и A' лежат на одной прямой;
- 2) точки А и А' равноудалены от точки і.

Примеры центрально-симметричных объектов на плоскости приведены на рис. 1.

Рис. 1. Центрально-симметричные фигуры

Плоскость симметрии, σ

Плоскостью симметрии называется плоскость σ , которая удовлетворяет перечисленным ниже условиям.

Для любой точки A, принадлежащей данному объекту, всегда найдется точка A', также принадлежащая этому объекту, такая что:

- прямая, проведенная через точки A и A', перпендикулярна плоскости σ;
- 2) точки A и A' равноудалены от плоскости σ. Примеры приведены на рис. 2.

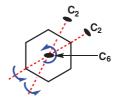


Рис. 2. Плоскости симметрии перпендикулярны плоскости чертежа и пересекают ее по пунктирным линиям

правильный шестиугольник:
оси симметрии C_2 лежат в плоскости чертежа;
ось симметрии C_6 перпендикулярна плоскости чертежа

Рис. 3. Простые оси симметрии

<u>Простая поворотная ось симметрии n-го порядка, С</u>

Осью симметрии n-го порядка называется ось, проходящая через данный объект, при повороте вокруг которой на угол 360°/n объект совмещается сам с собой (рис. 3).

Ось симметрии C_1 (поворот на 360°) называется тривиальным элементом симметрии. Существует также ось симметрии бесконечного порядка, C_{∞} . Поворот вокруг этой оси на любой угол приводит к совмещению объекта с самим собой (ось, проходящая через центр круга и перпендикулярная его плоскости; любая ось, проходящая через центр шара).

Зеркально-поворотная ось симметрии n-го порядка, S_n Это сложный элемент симметрии, включающий две

Это сложный элемент симметрии, включающий две операции: поворот вокруг оси на угол 360° /п и отражение в плоскости, перпендикулярной этой оси. При выполнении операций, соответствующих оси S_n , объект совмещается сам с собой.

Примером объекта, в котором имеется зеркально-поворотная ось, может служить деревянный квадрат, по углам которого вбиты четыре гвоздя: два сверху и два снизу. Ось \mathbf{S}_4 перпендикулярна плоскости квадрата и проходит через его

Рис. 4. Зеркально-поворотная ось четвертого порядка (S_4)

центр. Одного поворота вокруг оси на угол $360^{\circ}/4 = 90^{\circ}$ недостаточно, чтобы данный объект совпал сам с собой. Для достижения совпадения необходимо последующее отражение в плоскости, перпендикулярной оси S_4 и рассекающей квадрат пополам. При этом нижняя часть квадрата при отражении переходит наверх, верхняя — вниз (рис. 4).

Помимо оси S_4 в объекте, показанном на рисунке 4, присутствует также простая поворотная ось C_2 (поворот на 180°), совпадающая с осью S_4 .

Следует заметить, что плоскость симметрии эквивалентна зеркально-поворотной оси первого порядка (поворот на 360° и отражение в плоскости):

$$\sigma \equiv S_1$$
.

Аналогично центр симметрии эквивалентен оси симметрии S_2 (поворот на 180° и отражение в плоскости, перпендикулярной оси):

$$i \equiv S_2$$
.

Таким образом, элементы симметрии σ , i, S_n ($n \ge 2$) составляют группу зеркально-поворотных осей.

2. Изображение пространственного строения молекул. Конформации

Обычный способ изображения молекул в органической химии — это структурные формулы. Они передают порядок (последовательность) связи атомов. В случае молекул, имеющих плоское или линейное строение, с помощью структурных формул можно адекватно описать также геометрию молекул, например:

Если же в состав молекулы входят sp³-гибридизованные атомы углерода, имеющие тетраэдрическое окружение, структурная формула не может передать реальную геометрию молекулы, то есть расположение атомов в пространстве, например:

Этой цели отвечают пространственные модели (шаростержневые, Стьюарта—Бриглеба).

В то же время для описания стереохимических особенностей реакций важно правильно отобразить пространственное строение молекул на чертеже. Для этого существуют специфические проекции молекул на плоскость чертежа: клиновидная проекция, проекции Ньюмена и Фишера. В данном разделе познакомимся с правилами построения первых двух проекций.

Связи атома углерода в sp^3 -гибридном состоянии направлены к углам тетраэдра (рис. 5). Расположим молекулу метана так, чтобы связи $C-H^1$ и $C-H^2$ оказались в плоскости чертежа, которая в таком случае оказывается плоскостью симметрии молекулы. При этом атом H^3 в точности заслонит атом H^4 (рис. 5).

Для того чтобы были видны обе связи (C- H^3 и C- H^4), исказим проекцию, искусственно раздвинув эти связи. Вы-

$$H^1$$
 H^2 H^3 H^3 H^3 H^3 H^3 H^3 H^3 H^3 H^3

Рис. 5. Пространственное строение молекулы метана (1) и ее проекция на плоскость чертежа (2)

$$H^{2}$$
 $H^{3}(H^{4})$
 H^{2}
 $H^{3}(H^{4})$
 H^{3}

Рис. 6. Клиновидная проекция молекулы метана (3)

ступающую над плоскостью чертежа (направленную к наблюдателю) связь $C-H^3$ изобразим с помощью сплошной клиновидной линии. Связь $C-H^4$, уходящую за плоскость чертежа (направленную от наблюдателя), условимся изображать штриховой линией. В результате получим клиновидную проекцию молекулы метана (рис. 6).

Комбинируя проекции молекул метана, можно построить проекцию молекулы этана и других алканов (рис. 7).

Рис. 7. Клиновидные проекции молекул этана и пропана

$$H_3C$$
 H_3C
 H_3C

Рис. 8. Клиновидные проекции молекул

При изображении пространственного строения молекул освязи С-С, образующие углеродную цепочку, располагают в плоскости чертежа. Остальные связи атомов углерода опять-таки направляют к углам тетраэдров, изображая их с помощью клиновидных и штриховых линий (рис. 8). Обычно концевые метильные группы не показывают, их подразумевают на конце связей. Атомы водорода также часто опускают в изображении. В таком случае заместители при атомах углерода направляют по продолжению биссектрисы соответствующего угла зигзага (формулы 4 и 5 на рис. 8).

Образование связи С-С в алканах можно рассматривать как результат осевого перекрывания двух sp³-гибридных орбиталей (рис. 9).

Рис. 9. Перекрывание sp³-гибридных орбиталей (σ-связь)

Характерная особенность σ -связи — ее аксиальная (осевая) симметрия. Следствием этого является возможность поворота групп CH_3 в молекуле этана относительно друг друга на любой угол. При таком повороте не изменяется степень перекрывания двух sp^3 -гибридных орбиталей, то есть не нарушается σ -связь углерод-углерод. Описанное вращение действительно происходит в алканах за счет энергии теплового движения молекул (энергетический барьер вращения от 3 до 7 ккал/моль).

Рассмотрим молекулу этана. Повернем в ней правую группу ${\rm CH_3}$ относительно левой на угол 60° , как это показано на рис. 10.

Формы молекулы этана 6 и 7 представляют собой лишь две из бесконечно большого числа форм, возникающих при вращении одной из $\mathrm{CH_3}$ -групп относительно другой. Эти формы, различающиеся взаимным пространственным расположением атомов в молекуле, называются конформациями.

Рис. 10. Вращение вокруг связи С-С в молекуле этана

Слово «конформация» происходит из латинского языка: conformatio — форма, построение, расположение. В художественной литературе это слово впервые использовал Эдгар Πo^1 . Позже в химический лексикон его ввел Норман Хеворт².

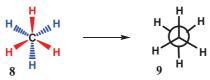
Строгое определение термину «конформация» дал H. C. Зефиров в 1977 г. [1]:

«Под конформацией следует понимать любое относительное положение совокупности ядер молекулы в пространстве, которое может быть достигнуто без нарушения целостности молекулы».

Взаимное расположение атомов в молекуле постоянно меняется во времени. Молекула в каждый данный момент времени существует в виде некоторой конформации. Конформации $\bf 6$ и $\bf 7$, показанные на рис. $\bf 10$, представляют собой пространственные изомеры: их нельзя совместить друг с другом. Тем не менее $\bf 6$ и $\bf 7$ — это не две молекулы, а лишь пространственные формы одной молекулы. Эти пространственные формы молекулы не существуют по отдельности, они постоянно превращаются друг в друга. Поэтому справедливо следующее утверждение, сформулированное В. И. Соколовым [2]: «Молекула есть множество, каждым элементом которого является конформация».

Для изображения пространственного строения молекул и, в частности, различных конформаций удобно использовать проекции, предложенные в 1955 г. М. Ньюменом³. Посмотрим на молекулу этана вдоль оси связи C-C со стороны одной из метильных групп. При этом «задний» атом углерода в $\bf 6$ закроется «передним» (рис. 11, формула $\bf 8$).

Мы получили еще одну проекцию (8) молекулы этана на плоскость чертежа. Изобразим в этой проекции удаленный


I surveyed their characteristics — I dwelt upon their peculiarities — I pondered upon their conformation...» — E. A. Poe, Berenice, 1835. «Uplifting my eyes from the page, they fell upon the naked face of the bill, and upon an object — upon some living monster of hideous conformation...» — E. A. Poe, The Sphinx, 1850.

Walter Norman Haworth (1883—1950) — английский химик, удостоенный Нобелевской премии (1937 г.) за работы по установлению структуры углеводов и витамина С. Предложил проекционные формулы циклических полуацетальных форм моносахаридов (формулы Хеворта).

³ Melvin Spencer Newman (1908–1993) – американский химик.

Рис. 11.

Рис. 12. Формула Ньюмена (9) для заторможенной конформации молекулы этана

Рис. 13. Формула Ньюмена (11) для заслоненной конформации молекулы этана

от наблюдателя атом углерода окружностью, а ближайший к наблюдателю — точкой на пересечении его связей. Тогда все связи С-Н можно изобразить сплошными линиями и проекция 8 преобразуется в формулу Ньюмена 9 (рис. 12). Изображенная на рис. 12 конформация молекулы этана называется заторможенной⁴.

При попытке изобразить формулу Ньюмена, соответствующую конформации 7, которую называют *заслоненной*⁵, мы столкнемся с тем, что «передние» атомы водорода заслоняют «задние» (рис. 13, формула 10). Для того, чтобы в формуле Ньюмена были видны все атомы водорода, слегка повернем «задний» атом углерода так, чтобы атомы водорода, связанные с ним, выглядывали из-за «передних» атомов (рис. 13, формула 11).

В заслоненной конформации 11 атомы водорода расположены ближе друг к другу, чем в заторможенной конформации 9 (рис. 12). Поэтому отталкивание между электро-

⁴ Англоязычный вариант — *staggered* (расположенный в шахматном порядке).

⁵ Англоязычный вариант — eclipsed (eclipse — 3аслонять).