

электроники

Ю.И. Митропольский

Мультиархитектурные вычислительные суперсистемы.

Перспективы развития

ТЕХНОСФЕРА Москва 2016 УДК 004.2 + 621.3 ББК 32.97 М67

М67 Митропольский Ю.И.

Мультиархитектурные вычислительные суперсистемы.

Перспективы развития

Москва: ТЕХНОСФЕРА, 2016. – 146 с. ISBN 978-5-94836-463-6

Настоящая работа посвящена исследованиям по мультиархитектурным вычислительным суперсистемам, анализу и перспективам их развития. Исследования, начатые в начале 90-х годов, явились продолжением работ по системе «Электроника СС БИС». На каждом этапе ставилась задача разработки оптимальной архитектуры вычислительной суперсистемы для текущего состояния технологической базы. Однако фундаментальные принципы построения системы актуальны и в настоящее время. В основе проекта лежат концепции мультиархитектуры, взаимной адаптации архитектуры и программ, проблемной ориентации основных вычислительных средств, функциональной специализации вспомогательных вычислительных средств, специализации внутрисистемных сетей и иерархического построения системы. Описана архитектура и система команд масштабируемой основной машины, архитектура и система команд функционально-специализированных машин, предназначенных для обеспечения функционирования мониторно-моделирующей подсистемы, сети памяти, сети управления, межузловой сети и периферийной подсистемы. Проведено сравнение проекта с зарубежными разработками. Показано, что на всех этапах проведения исследований имел место концептуальный приоритет, достигавший в ряде случаев 10 лет. Проанализировано современное состояние и планы по развитию вычислительных суперсистем. Рассмотрены перспективы развития и предложены этапы для реализации проекта.

Исследования проводились в рамках проектов ОНИТ РАН.

УДК 004.2 + 621.3 ББК 32.97

© 2016, АО «РИЦ «ТЕХНОСФЕРА», оригинал-макет, оформление

^{© 2016,} Ю.И. Митропольский

СОДЕРЖАНИЕ

Глава 1. Введение	7
Глава 2. Основные принципы концептуального проекта	10
2.1. Предыстория	
2.1.1. Электронная вычислительная машина БЭСМ-6	10
2.1.2. Система обработки данных АС-6	11
2.1.3. Вычислительная система «Электроника СС БИС»	13
2.1.4. Исследования по неоднородным вычислительным	
суперсистемам	17
2.2. Комплексный подход. Взаимосвязь технологии	
и архитектуры	19
2.3. Формы параллелизма в программах и в архитектуре	22
2.4. Принципы параллелизма и локальности данных	23
2.5. Развитие технологии и совместимость	25
2.6. Новые подходы к разработке архитектуры,	
аппаратуры и программного обеспечения	27
2.7. Основные принципы построения системы	29
2.8. Требования к прикладным программам	32
2.9. Основные новые особенности программного	
обеспечения	34
2.10. Снижение потребляемой энергии	36
Глава 3. Архитектура системы	37
3.1. Отличительные особенности проекта	
мультиархитектурной системы	37
3.2. Многомодульная масштабируемая основная машина	37
3.2.1. Векторные и скалярные мультикоманды	40
3.2.2. Локализация данных	44
3.2.3. Масштабируемая векторная машина	45
3.2.4. Масштабируемая конвейерная скалярная машина	45
3.2.5. Масштабируемые мультиархитектурные машины	52
3.2.6. Масштабируемые специализированные машины	52
3.3. Сетевая структура системы	53
3.3.1. Сеть памяти	54
3.3.2. Сеть управления	55

3.3.3. Межузловая сеть	57
3.4. Иерархическая структура системы	58
3.5. Мониторно-моделирующая подсистема, сеть управления	
и система программирования	
3.6. Обеспечение мультипрограммного режима	
Глава 4. Архитектура и система команд масштабируемой	
основной машины	67
4.1. Масштабируемая основная машина	67
4.2. Состав и топология масштабируемой основной машины.	69
4.3. Организация памяти	70
4.4. Директивы	71
4.5. Функциональные устройства	72
4.6. Система команд масштабируемого процессора	72
4.6.1. Форматы данных	72
4.6.2. Форматы команд	73
4.7. Система команд модуля диспетчерского управления	73
4.7.1. Модуль диспетчерского управления	73
4.7.2. Мониторные команды	75
4.7.3. Выдача команд в модуль МСА	75
4.7.4. Команды загрузки непосредственных данных	75
4.7.5. Команды передачи управления	76
4.7.6. Команды обмена	77
4.7.7. Команды обработки	80
4.8. Система команд модуля скалярно-адресного	82
4.8.1. Модуль скалярно-адресный	82
4.8.2. Мониторные команды	83
4.8.3. Команда выдачи векторной мультикоманды	83
4.8.4. Команда выдачи скалярной мультикоманды	84
4.8.5. Команды передачи управления	84
4.8.6. Команды обмена	85
4.8.7. Команды обработки	86
4.9. Система команд модуля векторной обработки	
4.9.1. Модуль векторной обработки	87
4.9.2. Мониторные команды	88
493 Команлы обмена	89

4.9.4. Команды обработки	91
4.10. Система команд модуля скалярной обработки	93
4.10.1. Модуль скалярной обработки	93
4.10.2. Обмен между оперативными регистрами	
и буферной памятью	94
4.10.3. Команды скалярной обработки	
4.11. Сетевая структура масштабируемой основной машини	
4.11.1. Внутренние сети вычислительного узла	96
4.11.2. Внутренние межсоединения основной машины	
Глава 5. Архитектура функционально-	
специализированных машин	98
5.1. Принципы программирования	
5.2. Операционная система	99
5.3. Принципы аппаратной реализации	
функционально-специализированных машин	100
5.4. Архитектура и система команд	
функционально-специализированных машин	101
5.4.1. Архитектура и система команд базового процессо	pa 101
5.4.2. Оперативная память функционально-	
специализированных машин	109
5.4.3. Коммутаторы и адаптеры сети памяти	110
5.4.4. Архитектура и система команд	
управляющей машины	111
5.4.5. Архитектура и система команд сетевой машины	111
5.4.6. Архитектура и система команд	
обменно-редактирующей машины	114
5.4.7. Архитектура и система команд	
периферийной машины	120
5.4.8. Центральная управляющая машина	124
5.4.9. Моделирующая машина	124
Глава 6. Сравнение с зарубежными проектами.	
Концептуальный приоритет	125
6.1. Неоднородная система.	
Мониторно-моделирующая подсистема	
6.2 Масштабируемый процессор	127

6 Содержание

6.3. Мультиархитектура	129
6.4. Сеть памяти, обменно-редактирующая машина	131
6.5. Межузловая сеть	132
6.6. Архитектурная и конструктивная иерархия	133
Глава 7. Заключение	134
7.1. Этапы развития высокопроизводительных	
вычислительных систем	134
7.2. Перспективы развития	137
7.3. Этапы реализации проекта	138
Литература	140

ГЛАВА І.

ВВЕДЕНИЕ

Работа посвящена вычислительным суперсистемам. Этот термин был предложен автором в 1996 г. [1]. Он отражал тот факт, что суперкомпьютеры, или суперЭВМ, как было принято говорить, не только становились мультипроцессорными и мультикомпьютерными, но и объединяли целый ряд подсистем или самостоятельных функциональных систем, таких как многоуровневая система памяти, система функционально-специализированных машин, система каналов и распределенная операционная система. Кроме того, в соответствии с предложенной концепцией построения неоднородных вычислительных систем в их состав входили подсистемы с различной архитектурой [2]. В дальнейшем был предложен термин «мультиархитектурные вычислительные суперсистемы» [3].

С технической точки зрения основные проблемы, связанные с созданием таких систем, а именно повышение тактовой частоты, увеличение степени параллелизма, изменение соотношения скорости процессора и памяти, а также энергетические вопросы снижения потребляемой энергии и отвода тепла, всегда остаются актуальными. Основным инструментом повышения производительности является использование новых физических принципов и совершенствование технологии. Другим инструме нтом является повышение эффективности использования аппаратуры, что может быть получено за счет таких факторов, как использование более совершенных алгоритмов, оптимизации программ, взаимной адаптации аппаратных и программных средств за счет создания новой архитектуры.

Большое влияние на разработку вычислительных систем с новой архитектурой оказывает требование совместимости имеющихся программ с новой архитектурой. Важным фактором является влияние экономических и коммерческих соображений и связанная с ними монополизация.

В настоящей работе подведены итоги исследований, начатых в начале 90-х годов. Исследования явились продолжением работ по системе «Электроника СС БИС». На каждом этапе ставилась задача разработки оптимальной архитектуры вычислительной суперсистемы для текущего состояния технологической базы. Однако фундаментальные принципы построения системы актуальны и в настоящее время. Целый ряд

предложенных концепций опередил зарубежные разработки, при этом опережение доходило до 10 лет.

Данный проект является концептуальным, поскольку для перехода на этапы НИР и ОКР в силу известных причин не было никаких условий. Важной особенностью проекта является его свобода от ограничений совместимости, поэтому он сбалансирован и оптимален. Проект может быть основой для разработки отечественной элементной базы и архитектуры отечественных вычислительных суперсистем.

Во второй главе приведена предыстория исследований и проанализированы основные принципы создания вычислительных суперсистем. Наиболее важным аспектом при этом является комплексный подход, при котором разработка архитектуры, аппаратных средств и программного обеспечения, включая системные и прикладные программы, должны выполняться параллельно.

В третьей главе рассмотрена архитектура суперсистемы. В ее основе лежат концепции мультиархитектуры, взаимной адаптации архитектуры и программ, проблемной ориентации основных вычислительных средств, функциональной специализации вспомогательных вычислительных средств, специализации внутрисистемных сетей и иерархического построения системы.

В четвертой главе описана архитектура и система команд масшта-бируемой основной машины. Набор модулей для построения процессоров позволяет компоновать структуры, ориентированные на различные формы параллелизма. Количественный состав модулей позволяет получать различные степени параллелизма в рамках одного процессора. Приведена архитектура и система команд отдельных модулей и процессоров на основе их объединения. Следует отметить, что описание системы команд носит эскизный характер, кодировка операций приведена для иллюстрации.

В пятой главе описана архитектура и система команд функционально-специализированных машин, предназначенных для обеспечения функционирования мониторно-моделирующей подсистемы, сети памяти, сети управления, межузловой сети и периферийной подсистемы. Функционально-специализированные процессоры, входящие в состав системы, существенно отличаются от масштабируемых процессоров прежде всего из-за сокращения числа форматов данных за счет исключения операций с плавающей запятой, а также благодаря более простым

схемам выполнения операций и меньшей глубине конвейерных схем. Основой для построения функционально-специализированных машин является базовый процессор. Индивидуальные функции, необходимые для той или иной машины, реализуются в виде модулей расширения.

В шестой главе проведено сравнение проекта с зарубежными разработками. Показано, что на всех этапах проведения исследований имел место концептуальный приоритет, достигавший в ряде случаев 10 лет.

В заключении проанализировано современное состояние исследований и разработок в области вычислительных суперсистем, рассмотрены перспективы развития и предложены этапы для реализации проекта.

Исследования были поддержаны грантами РФФИ и проводились в рамках проектов ОНИТ РАН.

Автор выражает благодарность большому числу сотрудников, с которыми он имел счастье работать на протяжении более 50 лет.

ГЛАВА 2.

ОСНОВНЫЕ ПРИНЦИПЫ КОНЦЕПТУАЛЬНОГО ПРОЕКТА

2.1. Предыстория

2.1.1. Электронная вычислительная машина БЭСМ-6

Электронная вычислительная машина БЭСМ-6 была разработана в середине 60-х годов и сдана Госкомиссии в 1967 году. Главный конструктор академик С.А. Лебедев заложил в основу структуры машины два основных принципа — принцип «водопровода», в настоящее время обычно называемый конвейером, и принцип специализации, обеспечивающий высокую эффективность при выполнении аппаратных или программных функций.

Машина БЭСМ-6 предназначалась для решения крупных научнотехнических задач, что, естественно, отразилось как на ее архитектуре, так и на выборе системы элементов и конструкции [4].

Элементная база машины включала диодные логические схемы и усилители на переключателях тока с подвешенным источником питания. Важными особенностями системы элементов являлись высокая скорость переключения и очень высокая нагрузочная способность как по входу, так и по выходу. Диодные и усилительные схемы размещались в специальных блоках, которые, в свою очередь, устанавливались в стойку с двух сторон.

Система синхронизации обеспечивала возможность функционирования конвейера на тактовой частоте 10 МГц, что использовано в большинстве схем, в частности в арифметическом устройстве и в устройстве управления. На следующем уровне темп конвейера определялся циклом работы буферной памяти, который равен трем тактам. Этот цикл соответствует и максимальному темпу поступления команд. В арифметическом устройстве использовался асинхронный конвейер, темп получения результатов зависел от типа операции и от операндов. Средний темп со-

ставлял 10 тактов, что соответствует производительности 1 млн операций с плавающей запятой в секунду (1 Mflops).

Для согласования пропускных способностей процессора и оперативной памяти применялось расслоение памяти и буферная память, работающая в режиме кэш-памяти. Ее объем составлял 8 команд и 8 слов данных.

Важной особенностью машины были аппаратные и программные средства для обеспечения мультипрограммного режима. К ним относятся виртуальная адресация памяти со страничной организацией, система прерывания, наличие нескольких режимов выполнения команд в процессоре и соответствующие программы операционной системы.

При реализации подсистемы ввода-вывода ставилась задача обеспечения высокой пропускной способности при обмене с устройствами памяти на внешних магнитных носителях и обслуживания достаточного числа электромеханических устройств ввода и вывода. В машине было реализовано 7 быстрых направлений обмена (в современных терминах — 7 селекторных каналов) и набор медленных направлений, аппаратура для которых ограничивалась минимальным набором согласующих элементов и схем связи этих элементов с процессором. Функционирование медленных направлений (образующих мультиплексный канал) обеспечивалось программами работы с каждым конкретным типом устройства.

Указанные выше аппаратные средства обеспечили создание многопользовательской операционной системы. За время эксплуатации машины было разработано несколько вариантов операционных систем, а также трансляторы с автокода и распространенных языков высокого уровня.

2.1.2. Система обработки данных АС-6

Установка и эксплуатация БЭСМ-6 в вычислительных центрах, где выполнялась обработка больших объемов данных, поступающих от большого числа абонентов, в частности в Центре управления полетами, послужила стимулом создания системы АС-6. В этих центрах узким местом являлось небольшое число внешних устройств и низкая пропускная способность подсистемы ввода-вывода БЭСМ-6. Разработка началась с создания аппаратуры сопряжения для БЭСМ-6 (отсюда и название АС-6). На первом этапе ставились задачи стыковки БЭСМ-6 с АС-6, которая должна была обеспечить подключение большого числа телеграфных

и телефонных каналов, каналов приема телеметрической информации, а также увеличения объема памяти на магнитных дисках и существенное увеличение числа периферийных устройств. Однако по мере накопления опыта по использованию оборудования первого этапа стало очевидно, что в системе необходимы более мощные средства для обработки данных и, главное, необходимо наличие возможности наращивания системы за счет подключения дополнительных машин и устройств. Все эти обстоятельства привели к постановке задачи разработки многомашинной системы с развитыми средствами реконфигурации.

В основу реализации системы легли идеи специализации подсистем и устройств и унификации в рамках системы каналов обмена.

Кроме БЭСМ-6 в систему входили центральный процессор АС-6, периферийная машина ПМ-6, дополнительные устройства оперативной памяти, контроллеры магнитных дисков, контроллер приема телеметрической информации. Все эти устройства объединялись в систему в качестве абонентов канала 1-го уровня. Этот канал предназначался для передачи сообщений, содержащих 50-разрядное слово и 23-разрядный адрес.

Периферийная подсистема состояла из периферийных машин ПМ-6 и ряда контроллеров-мультиплексоров, подключенных к ПМ-6 с помощью канала 2-го уровня. Канал 2-го уровня предназначался для передачи сообщений, состоящих из произвольного числа однобайтовых посылок. Для осуществления коммутации каналов использовались коммутаторы канала 2-го уровня. Общее число подканалов — 256. Основные контроллеры, рассчитанные на 32 подканала, — это мультиплексоры телефонных и телеграфных каналов и мультиплексор преобразования сопряжения, обеспечивавший подключение устройств, имеющих выход на интерфейс ввода-вывода ЕС ЭВМ.

Программное обеспечение системы AC-6 состояло из операционных систем БЭСМ-6, ЦП AC-6, ПМ-6, соответствующих систем программирования, тестовых и обслуживающих программ.

Система АС-6 с 1973 г. находилась в опытной эксплуатации, при этом продолжались работы по ее развитию. В 1975 г. она использовалась при проведении работ по программе совместного советско-американского проекта «Апполон» — «Союз». Сдача системы в полном объеме была проведена в 1979 г.

В системе АС-6 были впервые реализованы новые идеи, явившиеся основой разработок суперЭВМ и фундаментальных исследований

по архитектуре перспективных вычислительных систем. Прежде всего необходимо отметить следующие особенности:

- АС-6 это неоднородная многомашинная вычислительная система;
- проблемная ориентация ЦП АС-6 на решение задач по управлению сложными объектами и эффективную трансляцию;
- функциональная специализация периферийной машины ПМ-6 и других вспомогательных устройств;
 - специализация внутрисистемных каналов;

По мере создания и эксплуатации системы стало очевидным несоответствие новых архитектурных идей и возможностей элементной базы. В целях дальнейшего развития этого направления в 1973 г. был разработан проект системы БЭСМ-10, в котором на основе задела, полученного при создании АС-6, и использования высокоскоростных интегральных схем типа ЭСЛ планировалось создание перспективной вычислительной системы. Однако этот проект не был поддержан Министерством радиопромышленности СССР.

2.1.3. Вычислительная система «Электроника СС БИС»

Продолжение работ в этом направлении было осуществлено под руководством заместителя Главного конструктора БЭСМ-6 и Главного конструктора АС-6 академика В.А. Мельникова. В соответствии с совместным решением Министерства электронной промышленности СССР и Академии наук СССР в 1978 г. была поставлена задача создания системы с предельной производительностью на основе проведения широкого фронта исследований по микроэлектронике, оптоэлектронике и другим направлениям. Система предназначалась для решения наиболее крупных задач в области ядерной физики, метеорологии, геологии, авиастроения, космонавтики, микроэлектроники и др.

Разработка суперкомпьютерной системы «Электроника СС БИС-1» базировалась на том научном багаже, который был накоплен при создании БЭСМ-6 и АС-6 [5, 6, 7]. Однако для достижения производительности, на два порядка величины большей, чем в этих машинах, было необходимо освоение нового технологического уровня и разработки соответствующей ему архитектуры.

В рамках создания системы были разработаны и освоены следующие компоненты и узлы [8]: